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The use of a classical limit for the electronic degrees of freedom avoids the need to keep the nuclei clamped
while solving for the dynamics of the electrons. The Hamiltonian for the electrons will then depend on the
nuclear coordinates as dynamical variables. The resulting (classical) elentroiear coupled equations of
motion exhibit dynamical symmetry and are shown to depend only on the #4tiaf, the electron to nuclear

mass. We explore the coupled electronuclear dynamics as a function offor the special case of a single
electron moving between two centers. In the dynamical regime where the nuclei are heavy and the Born
Oppenheimer separation should work, the full dynamical procedure is in excellent agreement with the nuclear
dynamics as computed using the Be@ppenheimer separation. In the opposite regime where the period of
the electronic motion is long, a case that can be physically realized for very high Rydberg states, one reaches
an ‘inverse’ behavior where the nuclei adiabatically adjust to the slow electronic motion. The failure of the
Born—Oppenheimer separation, as judged by the electronic coupling not being governed solely by the
instantaneous position of the nuclei, is more severe when the initial electronic state is not stationary.

1. Introduction have very effectively employed classical coordinates that specify
occupancy of different electronic stafe¥. Their method is
sometimes known as the ‘classical electron analogue’ middel.
By using coordinates for site orbitals we are able to discuss
situations where many electronic configurations interact, which
was our original motivation. In the present problem the site
occupancy coordinates provide a direct view of the electron
transfer between the sites, a transfer that goes on even when
the system is in a (BornOppenheimer) stationary electronic

The different time scales for electronic and nuclear motion
are central to many notions in chemistry. The most important
idea that emerges from this separation is arguably that of a
geometrical structure of a molecule. This is defined as the
minimum on the potential energy, which is determined by the
fast moving electrons. It is becoming abundantly clear that the
success of this idea is closely related to the ground electronic
state being typically well-separated in energy from the excited
states. Higher up in energy one finds a maze of conical state. ) )
intersection’-3 that allows for a very facile coupling between N this exploratory study we solve for the motion of one
electronic and nuclear motions. To describe this coupling one lectron as it migrates between two centers while it is dynami-
often begins with a BoraHuang expansion (see Appendixes callylcoupl'ed tp the classical relative mot|on of the twq nuclei.
VIl and VIII in ref 4; see also ref 5) of the complete wave Our intention is to span the range of possible beha}wor,.from
function as a sum of components, each one representing awhere the nuclgl move slowly 'and the electr'on adiabatically
separated nuclear and electronic motion. These component wavdollows the motion of the nuclei to the opposite extreme (the
functions are then coupled by the so-called non Born So-called inverse BorrOppenheimer approximatiéf) where
Oppenheimer coupling terms that arise from the dependenceit iS th(_e slow electron that moves in _the effective potential
of the electronic wave functions on the nuclear coordinates. In determined by the faster moving nuclei.
the Born-Oppenheimer approximation, the electronic wave  The model here developed is for the purpose of examining
functions are taken to depend parametrically (and not dynami- the motion of the electron due to the presence of the other center,
cally) on the nuclear coordinates and so the coupling terms a coupling that is modulated by the vibrating nuclei. There is a
vanish. There are other methods (e.g., ref8pthat do not class of models in electron-transfer theory, known sometimes
start from a Bora-Huand expansion. The procedure, to be as ‘the spin boson Hamiltoniaf®.We emphasize that there is
discussed below, where we simultaneously solve for the motion an essential physical difference between our system and the
of electrons and nuclei is similar in spirit to these alternative problem addressed by such models. For us, in the Born
routes. There is one essential difference that is further discussedOppenheimer limit, the nuclei vibrate within the potential
The classical variables that we use for the electronnatets determined by the migrating electron. In models for electron
classical coordinates. Rather, these are coordinates that specifyransfer the vibrational coordinate is not necessarily the intersite
the occupancy of the possible site orbitals. Meyer and Miller separation. It can be a solvent coordinate or an intramolecular
vibration, but it is not the coordinate we have in mind here.
"'Part of the special issue “William H. Miller Festschrift’. .. The difference is in the back-coupling. In both sets of models
:Sgir\;‘;fg‘t!e”gé“ﬁiggéhor- Fax: 972-2-6513742. E-mail: rafi@fh.nujiac.l. the vibration can perturb the electronic motion. Here however
$The Hebrew University. there is a dynamic feedback because the motion of the electron
I'University of California Los Angeles. determines the potential for the vibration of the nuclei.
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There is a critical approximation in our method, and this is to the instantaneous values of the forces. It is worthwhile to
the use of classical mechanics to describe the motion of the point out that this adjustment needs to take place also in the
nuclei. In this respect, the closest to what we do is probably dynamical regime where the Borit©ppenheimer separation is
the dynamical Feynman theorem of Kerd¢iThe use of a a good approximation. Indeed, one can think of the separation
classical limit for the electronic motion is here not an ap- as the approximation where the faster moving electrons very
proximation because we use a classical fitrtat, in the orbital rapidly adjust to the current position of the nuclei. In other
approximation, is exactly equivalent to quantum mechalfics. words, also when the BorrOppenheimer separation is a good
The way of taking the classical limit for the electronic degrees approximation, the electrons constantly move. Furthermore, this
of freedom is not the same as in the method used by Meyer motion takes place even when the electronic state is a stationary
and Miller®10 and its semiclassical extensiodsBut the way one. Superficially this may seem unreasonable. But one must
we take the limit leads to intermediate results closely related to bear in mind that the electronic state is a stationary one for a
those provided by a method proposed by White and Mifler.  given, fixed, value of the nuclear coordinates. When the nuclei
The way we take the classical limit expresses the Hamiltonian move to a new position, the (BorfOppenheimer) electronic
in terms of the occupancy of the different site orbitals. For this state can change because it depends parametrically on the
reason it is necessary to note that the limit is consistent with nuclear coordinates. The signature of a failure of the Born
the Pauli principle. Oppenheimer separationnst that the site occupancy changes

The quantum chemical procedure of configuration interaction With time but that it changes with time not according to the
offers a suitable framework for the comparison of what we do dictate of the heavier and slower moving nuclei. In the case of
with the method of Meyer and Mill&its extensiond!18and an extreme failure of the BorrOppenheimer approximation,
applications to collision probleni€:2°Meyer and Miller solve itis the nuclear motion that rapidly adjusts to the instantaneous
for the time-dependent coefficients of the electronic configura- location of the electron.
tions that are selected, where the time dependence is due to the In their original papef Born and Oppenheimer argued, by
motion of the nuclei. We solve for the time-dependent coef- Perturbation theory, that the separation between the electronic
ficients of the site orbitals that are included in the basis set. and nuclear motion is governed by a coupling constant which
The time dependence is twofold: one due to the purely is the ratio of the electron to nuclear masses,= Vi,
electronic dynamics and one due to the motion of the nuclei. Using the notion of mechanical similarit§,we shall show
The distinction is not eitheror because the electronic coupling analytically that in the classical limit the electrenuclear
terms depend on the nuclear positions. In other words, we dynamics depends only . Ordinarily, one is in tha? < 1
diagonalize the electronic problem at the same time as we limit. In high Rydberg states one encounters the ‘inverse’ Born
propagate the dynamics. When one can include all the configu- Oppenheimer regintéwhere the electron of very high principal
rations that are possible for a given basis set, and in the orbitalquantum number has a very long orbital period, longer than
approximation for the electronic Hamiltonian, the result of the Vibrational or even rotational periods for the motion of the
two procedures will be the same (i.e., up to a canonical nuclei. We mimic the slow motion of the electron by computing
transformation). This is the case in any one-electron problem. the dynamics in the? > 1 limit, where the simulations show
Our method was introduced specifically for such problems that the faster moving nuclei rapidly adjust to the instantaneous
where, due to strong electron correlations, there are innumerablyposition of the electron.
more configurations than site basis functions. The classical Hamiltonian is derived in section 2. Section 2

One can consider avoiding some of the limitations of a and Appendix A also provide a brief summary of those results
classical description of the nuclear motion by treating electrons Of the quantum mechanical orbital approximation fof that
and nuclei in a similar way. In other words, by introducing basis are needed for taking the classical limit. The equations of motion
functions (e.g., travelling Gaussiahs) for the quantal nuclear ~ are set up and solved in section 3. Mechanical similarity and
motion and solving for the time-dependent weights of these the scaling of the equations of motion 44 are discussed in
nuclear basis states. This procedure also allows for introducingSection 4 with more details provided in Appendix B.
correlations between electronic and nuclear motion such that
there is a different nuclear dynamics for different electronic 2. Classical Limit for the One-Electron Two-Site Orbital
state€8 The resulting formalism is well-exploréd272%and here ~ Problem
we are content with a classical description of the nuclear motion. g4 the quantum mechanical problem we follow the discus-

We discuss the dynamics of an electron exchange betweensjon of H; in Chapters 1 and 2 of Slaférwith background
two atomic sites, one orbital per site. The distance between thegetails given in Appendix A. The electronic Hamiltonian in a

sites is allowed to vary subject to the total Hamiltonian. There pasis of two orthogonal equivalent site orbitals is derived in
are quantum mechanical, semiclassical, and classical method\ppendix A as

that are available to treat this dynamical problem. Our aim is

not to propose one more method for treating nonadiabatic atomic E(R) AR
collisions. We are interested in the dynamics of the electron Hy = (R E (R))
due to the coupling to the motion of the nuclei. Specifically we 0
aim to demonstrate the possible failure of the electronic motion

to be governed solely by the instantaneous positions of the Analytical expressions for the matrix elements and their
nuclei. dependence on the internuclear distaRege given in Appendix

A and shown graphically in Figure 6 therein. For the electron-
transfer integral3(R) the simple declining exponential

(2.1)

The dynamical solution presents the electronic motion from
a point of view that is different from what is usually done in
guantum chemistry. We therefore discuss what to expect. Our
procedure is analogous to what is sometimes referred to as B(R) = —poexp(-RIL) (2.2)
‘doing dynamics on the fly’. At every instant of time we allow
both electrons and nuclei to update their coordinates accordingprovides an accurate fit at all but very close in distances. Unlike
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as in the Heakel approximation, the energy of a skg(R) does
vary, albeit weakly, with the sitesite separation.

The classical limit for the electronic degrees of freedoth
will be taken for the Hamiltonian (2.1). The classical variables
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by the migration of charge between the two sites. In the Born

Oppenheimer approximation one first determines the stationary,
R-dependent solution of the electronic Hamiltonian and uses
the expectation value of the electronic Hamiltonian as the

are one pair of (conjugate) variables per orbital. We shall use potential for the motion of the nuclei. The breakdown is caused

the numbemn, 0 < n < 1, of electrons per orbital, which is an
action variable, and the conjugate phasé will become clear
that the electronic Hamiltonian conserves the nuntet ny
of electrons, wherea and b are the indices of the sites.

by a stationary solution of the electronic problem not necessarily
being a stationary solution of the full Hamiltonian. The reason
is that when the relative separati®is not a parameter of the
Hamiltonian but a dynamical variable, the terms in the electronic

(Classically, this is because it is independent of the conjugate Hamiltonian will be modulated as a function of time. Of course,
angle variablep, + ¢,.) Hence we require only two classical the cross-modulation between the two motions will only be
variables: the charge difference between the two sitesn, effective when they have comparable periods. Typically, the
— np (Sincen, + np, = 1) and the phase differenge= ¢, — nuclear motion is much slower, and this is what allowed Born
dp. As is expected from the quantum mechanical Hamiltonian and Oppenheimer to introduce their separation. We shall use
(2.1) and as will be shown classically explicitly, the two the reduced magsto scale the period{1/vx) of the nuclear
stationary electronic states are the two combinationg i 0) motion, and we shall verify analytically that the dynamics
and out ¢ = ) of phase, respectively. depend only on the mass ratio
To obtain the classical limit of the Hamiltonian we first write
the quantal Hamiltonian in second quantized form. Using K= mu
creationS+ and annihilatior5— operators (denoted by a caret)
for the electron on either site.=aorb

Ho = E(RS.S +E(RS.S +ARS,.S +

2.7)

and not on the individual masses. Born and Oppenhé&fner
showed that? is the relevant perturbation parameter, and we
will show analytically that the electremuclear dynamics only
ﬁ(R)ASﬁASD, (2.3) depends on this ratio. Thg absolute _values of the_ masses are
relevant since they determine the period of the motions. Hence
When the two sites are equivalent the two site enerfjes  If an external time scale, such as an electromagnetic field, is
(R) are identical. The classical limit is obtained by taking @added to the Hamiltonian, then the absolute values of the masses
coherent states expectation values, where the coherent stated0 matter. But if there is no external frequency with which one
need to be specially constructed to take care of the restrictionsC@n resonate then only the mass ratio needs to be specified.

imposed by the Pauli principfé. For the simple case of one The two-equivalent-site problem presents an interesting
electron, see eq 2.13 of ref 16, one has special case because the stationary solutions for the electronic

motion, which have even or odd symmetry, remain stationary
E$+A§,Q, = QN:1|S+37|XN:1D= expl(¢; — ¢) /ninj (2.4) even when the charge-transfer amplityitie modulated by the
where the site indek = a or b. The expectation value of the

motion of the nuclei. We will therefore also show computational
results for two in inequivalent sites.

guantal Hamiltonian (2.1) is obtained, using eq 2.4, as Given the classical Hamiltonian, eqs 2.5 and 2.6, one can
. compute a unique classical trajectory for the relative motion of
Hg(R) = Hy = Ei(R)n, + E(R)n, + the nuclei and results are reported in section 3. However, for
[ _ given electronic initial conditions, the dynamics can depend on

2PRV NN, COSEs — 91) (2:5) the initial conditions chosen for the nuclear vibration. The reason

Note that the electronic energy depends not only on the IS the back-coupling from the nuclear trajectory to the electronic
population of the two sites but also on their relative phase. For dynamics. Therefore, in a manner made familiar by ordinary
a nonstationary electronic state, where the phases of the siteSometimes called ‘quasi-classical’) trajectory computations, one
occupancies vary rapidly with time, the dependence on the c@n sample the initial phase of the vibration. In those situations,
electronic phase is an additional source of modulation of the €-g- in Figure 5, where there can be energy transfer between
interaction. the electronic and the nuclear degrees of freedom, the qualitative
In the general case the Hamiltonian (2.3) will contain terms Outcome of the dynamics does depend on the initial phase. Itis
up to fourth order in the electronic operators. It is then not the then possible to compute a quasi-classical probability by running
case that the expectation values of the higher order operatorsNany trajectories in a narrow energy range and determining
are the products of expectation values of linear and bilinear the fraction of all trajectories that lead to a particular outcome.
terms. In that sense, our procedure is a classical limit. For an
orbital approximation, when the Hamiltonian has no terms
beyond the bilinear ones, the transcription is an exact'‘dne. The classical Hamiltonian determines the time evolution for

Equation 2.5 is just the electronic part. The full classical both electronic
Hamiltonian contains two additional terms: the Coulomb

3. Equations of Motion

repulsion between the nuclej,(R) and the kinetic energy for dn; . Hy d¢  oHy b 31
the relative motion, of reduced magsof the two centers ot A, at an,’ I=a (3.1)
H = P21 + V,(R) + Hy(R) (2.6) and nuclear
The dynamic coupling between the electronic and nuclear dp H, dgr dHy
motions is evident from the terms that depend on both kinds of ad - R’ dt P (3.2)

variables. Oscillations of charge from one site to another make
the electronic energysle(R) time-dependent. Then the nuclei  degrees of freedom. For the Hamiltonian specified in egs 2.5
are subject to a rapidly varying force, with a period determined and 2.6, it follows that any increase in the charge on one site is
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exactly compensated by a decrease in the other charge

dn,
dt

dn,

=0 (3.3)

For this reason the coupling (charge-transfer) term in the
electronic Hamiltonian can be referred to as a -eoee
resonance. Taking advantage of the conservation of the total
charge (which we take to equal unity) one can reduce the
number of classical variables for the electron dynamics to just
two conjugate variables

n=(n,— n)V2,¢= (¢, — ¢)/V2,{ng} =1 (3.4)

The division by a factor ofv/2 is needed to make the
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Figure 1. Exactly computed electron (dotted curve) and nuclear (full

variables canonically conjugate; that is, that their Poisson (curly) curve) dynamics vs time in the BorOppenheimer regime. Note how
bracket is unity, as indicated. In this way the new variables the electronic motion is much faster and how its period tracks the

satisfy Hamiltonian equations of motion

position of the nuclei. This is because, as shown in Figure 6, the

electronic coupling(R), is a rapidly varying function oR. In the

dn_ oH,, dp _ oH
dt dp " dt  on

(3.5)

where eq 2.5 is expressed in terms of the new variables as

Ha(R) = (EL(R) + Ey(R)/2 + n(ELR) — E,(R)IV2 +
B(RIW1 — 2n’cosgpv/2) (3.6)

text we show that the dynamics is completely defined by the ratio,
«~4, of the reduced mass of the nuclei to the mass of the electron, eq
4.2. This plot is forc = 0.1778. The action variableis in units off.

=
For the two-equivalent-site problem, when the site energies § =
are equal, the two stationary solutions of the electronic problem, = g
dn/dt = 0, dp/dt = 0, are obtained when c@s(2) = +1. =
These are the classical even and odd solutions. The classical
Born—Oppenheimer approximation is obtained by computing
the classical electronic energy as a function of the parameter ; BRI :
R. For the two stationary electronic states the value of the energy 500 1666 1500 2000 500
is Hel(R) = Ey(R) or Ey(R). time/au
The full classical Hamiltonian for two identical sites is ‘ ”
2 2 V;(t) | K= 10 19
Hy = Ey(R) + S(RV1 — 2n° cos 2¢) + 1R+ P7/2u 0.1 -
(3.7) ’
238
. = ﬁ =
with >‘“\ 0 A “}\'"*ﬁ"‘“ 33 R |V 26
= NEIO S AT R I g
Eo(R) = (E4(R) + E,(R)/2, S(R) = (E(R) — E,(R)/2 (3.8) = T VT fae ®
oo 1
as s_hown in the Figure 6 in Appendix A. The four equations of o L “\“," R(@' \V/ \M zf i 22
motion that we solve are ‘ Oy r2
2 22 24 26 28 3 : I8
n _ :
‘é—t = V2 B(R)(1 — 2n’)*? sin(v/2¢) (3.9) 0 2 * time/ad ’ 10
Figure 2. Exactly computed electron (dotted curve) and nuclear (full
B curve) dynamics vs time in the BorfOppenheimer regime (top panel)
% = —2n3(R)(1 — 2n?) 2 COS(\/§¢) (3.10) and in its inverse (bottom panel). In the inverse regime the faster moving
nuclei adjust rapidly to the electron. The staircase-like motion of the
slow electron vs time, which is seen upon the close examination
d_R= Plu (3.11) provided by the insert, is discussed in the text.
dt ’
Figure 1 shows typical trajectories in the Bef@ppenheimer
dP _ _dEo(R) + 1 1- 2n2)1/2 cos(\/éqﬁ)dﬁ(R) (3.12) (k* < 1) regime. The overall point is that the electronic motion
dt drR R drR ' is far faster than that of the nuclei. There is also a more detailed

The equation of motion for the nuclei has two parts. The first
two terms are the mean potential of the two electronic states.
The third term is however determined not just by the population
of the two sites (1- 2n?)2 = 2,/n_n, but also by their (time-
dependent and coupled to tRemotion, eq 3.10) relative phase.

point namely that the electronic motion ‘instantly’ adjusts to
the location of the nuclei. The latter is the essence of the Born
Oppenheimer separation. To make this point in a graphically
vivid manner we chose initial conditions for the nuclear motion
such that its amplitude is reasonably high. This motion is shown
as the solid line with its scale on the ordinate on the right. The



2712 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Remacle and Levine

wide variations irRimply, cf. Figure 2, that the transfer integral 0.25
B(R) varies by more than 1 order of magnitude. At a gien @ = 1000
the frequency of the electronic motion between two equivalent

sites is B(R). Therefore, if the electron fully tracks the motion :

of the nuclei, its frequency will be quite high when the two -03 4

atoms are near and quite low when the atoms are far apart. In "
this adiabatic regime, the nuclear dynamics are very accurately
given by solving, as usual, for the nuclear motion in the ground
electronic potentiaEy(R).

One has decades of experience that usually, and certainly for
H;’, the Born-Oppenheimer separation works very well for
the nuclear motion in the ground electronic state. Therefore, 04 ‘ ‘
the result that the ordinary vibrational motion computed on the 0 2000 4000 6000 8000
ground electronic potential is, in the Ber®ppenheimer «* time / au
< 1) regime, identical to computing a nuclear trajectory using
the coupled dynamics can be considered as a test of the method.

Figure 2 contrasts the numerical solution of the equations of
motion in the Borr-Oppenheimerd = 0.1) and inverse Born
Oppenheimer { = 10) regimes. That the two limits are
complementary is quite clear from the numerical results. In the
Born—Oppenheimer regime the slowly moving nuclei determine
the instantaneous value G{R) and the electrons immediately
adjust to this value of the transfer integral. In the inverse regime,
the fast moving nuclei immediately adjust to the local position
of the electrons. This leads to an interesting aspect that is only ‘
seen when the abscissa is blown up. As seen in the insert, the I . P
electronic motion vs time is a staircase-like curve. The reason 0 20 40 60 80 100
is the long time that a vibrational motion in an anharmonic time / au
potential spends at the outer turning point. Therefore, there areFigure 3. Exactly computed electron (dotted curve) dynamics vs time
relatively long time windows wherR(t) is large. During those in the Born—-Oppenheimer regime (top panel) and in its inverse (bottom

- . . . panel) for two sites which differ considerably in their ionization
ZVAZ?S;VZ itsr'][ﬁbclmjoprlllrilsgﬁr(l?t '(;Sh\;?]ré’i :g‘a”v and so the electronic potentials AIP = A(Reg). The electron stays longer at one site than

. ) . ] . the other. For each panel, one can analytically solve the electron
An interesting feature of the numerical solution, which dynamics in the BorarOppenheimer separation. For the top parel,

deserves a separate discussion that will be given elsewhere, is= 0.1778, the result is disting_uishable from the exact dynamics but is
that the breakdown of the BorrOppenheimer approximation barely different to graph reading accuracy. For the bottom parel,

is much more prominent when the electronic state itself is not 3.162, and then the BorrOppenheimer separation (dashed curve) fails.
stationary. In the special case of two equivalent sites, this is . i

easier to understand. The Ber®ppenheimer stationary elec- Initially in the ground electronic staten(0) = 04(0) = 0).
tronic state has = 0 irrespective of the value ¢f(R). When Suppose however that the initial electronic state is not quite

the two sites are not equivalent, the tem(&,(R) — Eb(R))/«/E sta’il_ona_ry. T_r;enfthﬁ tran(sjfer_ t?]f' electrohm(l:f e?ergy tcl) the nuc_:lzar
in eq 3.6 is not vanishing and so the phase is more rapidly motion IS quite facile and within one-halt of a nuciear perio

varying. For us, the unexpected point is that the separation ofthe bond dissociates.

the electronic and nuclear motions is less accurate when the Figure 5 shows the trajectory of the electron for the

initial electronic state is not a BorrOppenheimer stationary ~ dissociating trajectory shown in Figure 4. At early times when

state. the motion is Bora-Oppenheimer like, cf. Figure 4, the electron
An example of electron dynamics for two inequivalent sites rapidly adjusts to the motion of the nuclei, hopping back and

is shown in Figure 3. In the BorOppenheimer separation one  forth between them. Then the electron stayed too long on one

solves the electron dynamics for clamped nuclei. In our case Side of the molecule, and this allowed the bond to break.

this means that for each value of time one uses the value of the

instantaneous separatiéhto get the value of the electronic 4. Mechanical Similarity

coupling. The resulting expression for the charge migration is

ne) = _(Aa/ﬁ)((Aa)z + (2B(R®))?) Y2 This works even Mechanical similarity® is a theorem about the invariance of
for not too low values of, but fails, as shown in Figure 3 the equations of motion of classical mechanics. The familiar

whenx > 1. virial theorem, long a mainstay of electronic structure théd#y,
Figure 4 shows an example of the breakdown of the is a special case for a stationary bounded system. We here use

separation of the two motions. The initial conditions for the a special case of the general result in order to show that systems

motion of the nuclei R(0),P(0)) are chosen such that in the with a given value of? = +'m/u follow the same trajectories.

Born—Oppenheimer approximation, it corresponds to a high ~ The identification ofc? as the parameter whose (small) value
bound vibrational state. The motion in the Bet@ppenheimer  allows for a separation of the electronic and nuclear motion is
approximation is plotted at discrete values of time. The due to Born and Oppenheim& They did so by casting the
continuous curve that goes through these points is the trajectoryfull quantum mechanical stationary solution as a perturbation
computed from the fully coupled dynamics. The full dynamics expansion with«? as the coupling parameter. We shall show
requires specifying initial values also for the electronic motion, explicitly that in the classical limit the full dynamics is governed
and the bound trajectory shown in Figure 4 is for the system by the magnitude o£2.

n(t)/au

i =0.0L

n(t)/au
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Figure 4. Example of a qualitative breakdown of the Bern
Oppenheimer separatiork
trajectories, all three starting from the same initial conditidRsat

equilibrium and a high momentum. When the initial conditions for the

= 0.1778. Shown are three nuclear

electron correspond to a (Boti©ppenheimer) stationary state= 0
for a symmetric diatomic, the motion remains bound. The solution for of u should fall on the same curve when plottedzv&Ve have

R(t) in the Born—Oppenheimer approximation (short-dashed curve)
cannot be distinguished from the results of the exact dynamics (long-
dashed curve). If the initial electronic state is not stationary so that
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The short proof begins with the observation that since we
work in atomic units, all masses are measured in units of the
electron mass. Therefore the equation of motion for the nuclei,
egs 3.11 and 3.12, should really be written as

LR GE(R) 1 , BR
K AF—— dR +Ez—(1—2n2)12cos(\/§¢)w
4.1)

The equations of motion for the action-angle variables, eqgs
3.9 and 3.10, remain as they are when expressed in atomic units.
Therefore, the only dependence ois in the left-hand side of
eq 3.11. The left-hand side of eq 4.1 suggests that time is scaled
by k2, T = «?, so that the nuclear dynamics become independent
of the mass

2n dE(R
% - —ioé ), Riz — (1 - 22 cos/29) % 4.2)

Numerically, if one solves the unscaled equation of motion
(3.11) forR(t) then trajectories computed for different values

verified that this is the case for the results Rft) where between
the two panels shown in Figure 2 the valueuds changed by

there is some electronic energy over the ground state, then energy3 Orders of magnitude. The reader will quickly recognize that
rapidly flows into the nuclear motion and the molecule dissociates. the equations of motion (3.9, 3.10) for the electron do not scale

The corresponding electron dynamics are shown in Figure 5.

n(t)/au

ne/ (1) y

0

1
2000

4000 6000

time/au

with 7 . This is only apparently so because the equations are
written in atomic units. In fact, they do scale properly but to
show this one should be careful with the units. A continuation
of the short proof is to note that if the action variahles taken

to be dimensionless (i.e., it is action measured in unit&)of
then the coupling integra® in eq 3.9 has the dimensions of
frequency while in eq 2.5 it has the dimensions of energy. In
other words, to be precise with the units, the coupling in eq 3.9
should be written asf(R)/h) (the same is true for eq 3.10).
The scaled equation of motion fortherefore reads

% = V2 BRMYA — 2 sinw2¢)  (4.3)

whereh* is the value of Planck’s constant for the new value of
the electronic mass. In other words, we take the value of
Planck’s constant to change if we change the mass of the
electron. The reason is that in doing mechanics one is allowed
to scale the mass while keeping the length unchanged. So when,

Figure 5. Electron dynamics (dotted line) for the dissociating trajectory say, the Bohr radius is kept constant and the electron mass is
shown in Figure 4 and reproduced also in this figure. When the nuclear scaled, then it is inevitable thatscales as/m and frequency
motion is bound, the period of the electronic motion is quite short. At gcales as 4/m . When time is scaled witk/m then energy is

about 1000 au of time, when the electron is on one side of the molecule
it fails to swing to the other side and instead imparts energy to the
nuclear motion.

Superficially, it may seem that there is no need for a detailed
proof and that the following general argument will do: Consider
a Newtonian problem witin degrees of freedom, each with its

'unchanged. Appendix B gives a more detailed discussion.

5. Concluding Remarks

Coupled electronic and nuclear classical equations of motion
for an electron oscillating between two centers were presented

own mass. Then the equations of motion for the coordinates @hd solved numerically. The electron transfer between the two
aremd?ri/dt? = —aV/ar;, i = 1,...n. If all masses are scaled by

a common factok* the equations of motion and their solution

remain unchanged except that time runs faster by the faétor
Q.E.D. The reason one cannot simply refer to this well-known tion so that the electronic motion does not cease even if the
result is that the mechanical coordinates of the electron havenuclei are clamped. As expected, when the nuclear motion is
also kinetic and not only potential coupling, the two together slow compared to the electronic hopping between the two sites,
being necessary to have a strict one-one resonance coupling ofthe Born-Oppenheimer separation works well: the period of

the type exhibited in the Hamiltonian (3.6). So we regard it as the electronic motion is determined by the value of the electronic
unavoidable to verify the result. We provide a shorter proof in coupling for the nuclei clamped at that point and the nuclear
the text and a completely detailed proof in Appendix B.

sites is governed by the electronic interaction. This interaction
is a function of the sitesite distance, and this couples the
electronic and nuclear motions. We work in the site representa-

motion is governed by a static potential determined as the
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eigenvalue of the electronic problem for clamped nuclei. The
coupled classical equations of motion depend only on the ratio
of electronic to nuclear masg? = m/u. Forx < 1, the Born-
Oppenheimer separation works well except when the initial
charge distribution is far from a stationary one (e.g., asymmetric
for two equivalent sites). For > 1, the separation fails and it

is the electron that moves in the static potential determined by
the nuclei.
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Appendix A: Quantum Chemistry

The elementary discussion of,H(Chapters 1 and 2 of
Slatef?) begins with hydrogenic orbitals, eq A.1, one orbital
per site. For a finite sitesite separatiorRr, such orbitals are
not orthogonal and their overlap, which depend&pis denoted
by S. The equivalent-two-site problem has an inversion sym-
metry and so linear combination of orbitals can be given an
even (g) or odd (u) symmetry labels. When only one orbital is
used per site, the two states are

Ogu= [2l0®)(1 £ 9] M exp-ar,) + exp(-ary) (A.1)

Herer is the distance of the electron to its nucleus, with a
screening constamnt. We keepa explicitly for future reference
but unless otherwise stated, the computations will be carried
out for a fixed at the value of the separated atomsz Zme/

h?, whereZ is the charge on the nucleus, amcande are the
electron’s mass and charge. In the atomic units that we will
usea = 1, but since we intend to also discuss the scaling with
the electron’s mass, we show it explicitly.

In the limited atomic basis, the functions (A.1) diagonalize
the Hamiltonian, withR-dependent eigenvalueBgy(R). Ex-
plicitly,

EyuR) = (Z€)[F(aR) + F(aR]  (A2)
the first term being the kinetic energy and the second the
potential. Our result differs from the form given by Slater in
that we use an explicit form for the kinetic energy of the
electron, namely—(A%2m)V?, whereas Slater who works in
Rydberg units writes the kinetic energy just-a¥2 TheF's
are ratios of simple polynomials given explicitly by Slater.

Remacle and Levine
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Figure 6. Electron-transfer coupling3(R), and the site electronic
energy,Eqo(R), as defined in eq 3.8. Note the essentially exponential
decline of §(R) with the internuclear separatioR. In the Born-
Oppenheimer approximatiorfgR)/h is the frequency of the electronic
motion when the two nuclei are at the distarfitapart. As discussed
in Appendix B, this frequency decreases, as/th when the elec-
tronic massm is (artificially) increased. The insert shows the two
eigenvalues, of even and odd symmetry, of the electronic Hamiltonian
of H; vs the internuclear distand Note that the Coulomb repulsion
between the two nuclei is not included in the values as shown. The
potential energy for the nuclei is, in the Ber@ppenheimer ap-
proximation, E(R) + 1/R. The eigenvalues are computed without
optimizing the screening parameter

To assign the charge uniquely to one site or the other, we
de-diagonalize the electronic Hamiltonian. For two equivalent
sites this is achieved by a rotation of°45

_ (EQ(R) ) (EO(R) B(R)
o E(R) (R E(R

The orthogonal site orbitals in which the new Hamiltonian
matrix is specified are

H ) (A5)

P = (g £ 0)IN2 01 0y, = (9o £ pp)IN2  (AB)

and correspond to the orthogonalized basis orbitals ofdio.33
The migration of charge from one site to another is due to the
transfer amplitudes,

B(R) = g Halpyl= (By(R) — E,(R))/2

Equations A.2-A.7 provide an analytic expression for the
dependence of the electron-transfer amplitude on the internuclear
distance R, a dependence that is well-fitted as a simple
exponential, eq 2.2. (The correlation coefficient RF 0.3 au
is better than 0.999, and a sum of two exponentials provides an
essentially exact fit fof(R).) Figure 6 is a plot of the analytic

(A7)

Making a few sign changes in these polynomials produces theform of B(R) as well as that of the site energiy(R) =

expression foEy(R) so that using upper/lower signs for the g/u
case respectively, in atomic units,

Fi(aR) =1+ expaR)(1+ aR— (aR?3))2(1+ 9
F(aR) = —(1 £ 2 exp~aR)(1 + oR) +(1/0R) —
exp(—2aR)(1+ 1/aR)/(1 £+ 9 (A.3)

whereSis the overlap integral

SaR) = expoR)(1+ aR+ (aR)?/3)  (A.4)

[alHell @bl Note that the simple Hikel approximation takes
the site energy to be independent of the distance to the other
site. This is not exactly the case, as shown in Figure 6. The
deviation of the site energy from the value of an isolated site is
accurately represented as a difference of two exponentials.

Appendix B: Scaling

We want to scale time and mass but not distance such that
Newton’s equation of motion and therefore energy, remain
unchanged. If the potential energy is only a function of the
coordinates, it is unchanged by such a scaling. The kinetic
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energy is unchanged if the mass and time are changed such R  _, °R

that mass/timé remains constant. We first complete all the #4~ 5> =Kk ~—5=

details for the discussion given in the text in sectiéf @nd dt de

then give a proof purely within classical mechanics without a - do(R) ) do(R) _ dEy(R) + 1 (B.5)
reference tdh. ab dR md dR R R

The atomic unit of enerdy €%/a, wherea is the Bohr radius

and e the elementary charge, remains unchanged under thegq that the nuclear motion only dependscoffrom eq B.5 =

proposed scaling. The atomic unit of frequeedgh will change t/v/'m. The equation of motion fory is
and requires that if the mass of the electron is changed, we scale ' 4

the value ofh such that, using primes for the new valuks= 2 2
(m/m)Y2. As a check note that this scaling keeps the value of % _ dr,

= —kr, — w(Romr, —

the dimensionless fine structure constefttic, wherec is the di? dr?
velocity of light. (The scaling of time requires thet= (m/ (R P dw(R

1 dR
m)~Y2c)) The atomic unit of timeh¥mée*, scales withv'm as it Q kr, — a)(R)zmra + Tb% — ((jj—T (B.6)
should. This provides all the details needed to rescale equations @ @ Vm

written in atomic units. There is however no essential need to
work in atomic units. Indeed, they are a shade cumbersome if Where the right-hand side is also independent of the masses.
one wants to scale the mass of the electron. Therefore we
provide a proof of mechanical similarity without any reference References and Notes
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