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The use of a classical limit for the electronic degrees of freedom avoids the need to keep the nuclei clamped
while solving for the dynamics of the electrons. The Hamiltonian for the electrons will then depend on the
nuclear coordinates as dynamical variables. The resulting (classical) electron-nuclear coupled equations of
motion exhibit dynamical symmetry and are shown to depend only on the ratio,κ4, of the electron to nuclear
mass. We explore the coupled electron-nuclear dynamics as a function ofκ for the special case of a single
electron moving between two centers. In the dynamical regime where the nuclei are heavy and the Born-
Oppenheimer separation should work, the full dynamical procedure is in excellent agreement with the nuclear
dynamics as computed using the Born-Oppenheimer separation. In the opposite regime where the period of
the electronic motion is long, a case that can be physically realized for very high Rydberg states, one reaches
an ‘inverse’ behavior where the nuclei adiabatically adjust to the slow electronic motion. The failure of the
Born-Oppenheimer separation, as judged by the electronic coupling not being governed solely by the
instantaneous position of the nuclei, is more severe when the initial electronic state is not stationary.

1. Introduction

The different time scales for electronic and nuclear motion
are central to many notions in chemistry. The most important
idea that emerges from this separation is arguably that of a
geometrical structure of a molecule. This is defined as the
minimum on the potential energy, which is determined by the
fast moving electrons. It is becoming abundantly clear that the
success of this idea is closely related to the ground electronic
state being typically well-separated in energy from the excited
states. Higher up in energy one finds a maze of conical
intersections1-3 that allows for a very facile coupling between
electronic and nuclear motions. To describe this coupling one
often begins with a Born-Huang expansion (see Appendixes
VII and VIII in ref 4; see also ref 5) of the complete wave
function as a sum of components, each one representing a
separated nuclear and electronic motion. These component wave
functions are then coupled by the so-called non Born-
Oppenheimer coupling terms that arise from the dependence
of the electronic wave functions on the nuclear coordinates. In
the Born-Oppenheimer approximation, the electronic wave
functions are taken to depend parametrically (and not dynami-
cally) on the nuclear coordinates and so the coupling terms
vanish. There are other methods (e.g., refs 6-8) that do not
start from a Born-Huang4 expansion. The procedure, to be
discussed below, where we simultaneously solve for the motion
of electrons and nuclei is similar in spirit to these alternative
routes. There is one essential difference that is further discussed.
The classical variables that we use for the electron arenot its
classical coordinates. Rather, these are coordinates that specify
the occupancy of the possible site orbitals. Meyer and Miller

have very effectively employed classical coordinates that specify
occupancy of different electronic states.9,10 Their method is
sometimes known as the ‘classical electron analogue’ model.11

By using coordinates for site orbitals we are able to discuss
situations where many electronic configurations interact, which
was our original motivation. In the present problem the site
occupancy coordinates provide a direct view of the electron
transfer between the sites, a transfer that goes on even when
the system is in a (Born-Oppenheimer) stationary electronic
state.

In this exploratory study we solve for the motion of one
electron as it migrates between two centers while it is dynami-
cally coupled to the classical relative motion of the two nuclei.
Our intention is to span the range of possible behavior, from
where the nuclei move slowly and the electron adiabatically
follows the motion of the nuclei to the opposite extreme (the
so-called inverse Born-Oppenheimer approximation12) where
it is the slow electron that moves in the effective potential
determined by the faster moving nuclei.

The model here developed is for the purpose of examining
the motion of the electron due to the presence of the other center,
a coupling that is modulated by the vibrating nuclei. There is a
class of models in electron-transfer theory, known sometimes
as ‘the spin boson Hamiltonian’.13 We emphasize that there is
an essential physical difference between our system and the
problem addressed by such models. For us, in the Born-
Oppenheimer limit, the nuclei vibrate within the potential
determined by the migrating electron. In models for electron
transfer the vibrational coordinate is not necessarily the intersite
separation. It can be a solvent coordinate or an intramolecular
vibration, but it is not the coordinate we have in mind here.
The difference is in the back-coupling. In both sets of models
the vibration can perturb the electronic motion. Here however
there is a dynamic feedback because the motion of the electron
determines the potential for the vibration of the nuclei.
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There is a critical approximation in our method, and this is
the use of classical mechanics to describe the motion of the
nuclei. In this respect, the closest to what we do is probably
the dynamical Feynman theorem of Kerner.14 The use of a
classical limit for the electronic motion is here not an ap-
proximation because we use a classical limit15 that, in the orbital
approximation, is exactly equivalent to quantum mechanics.16

The way of taking the classical limit for the electronic degrees
of freedom is not the same as in the method used by Meyer
and Miller9,10 and its semiclassical extensions.11 But the way
we take the limit leads to intermediate results closely related to
those provided by a method proposed by White and Miller.17

The way we take the classical limit expresses the Hamiltonian
in terms of the occupancy of the different site orbitals. For this
reason it is necessary to note that the limit is consistent with
the Pauli principle.

The quantum chemical procedure of configuration interaction
offers a suitable framework for the comparison of what we do
with the method of Meyer and Miller,9,10 its extensions,11,18and
applications to collision problems.19,20 Meyer and Miller solve
for the time-dependent coefficients of the electronic configura-
tions that are selected, where the time dependence is due to the
motion of the nuclei. We solve for the time-dependent coef-
ficients of the site orbitals that are included in the basis set.
The time dependence is twofold: one due to the purely
electronic dynamics and one due to the motion of the nuclei.
The distinction is not either-or because the electronic coupling
terms depend on the nuclear positions. In other words, we
diagonalize the electronic problem at the same time as we
propagate the dynamics. When one can include all the configu-
rations that are possible for a given basis set, and in the orbital
approximation for the electronic Hamiltonian, the result of the
two procedures will be the same (i.e., up to a canonical
transformation). This is the case in any one-electron problem.
Our method was introduced specifically for such problems
where, due to strong electron correlations, there are innumerably
more configurations than site basis functions.

One can consider avoiding some of the limitations of a
classical description of the nuclear motion by treating electrons
and nuclei in a similar way. In other words, by introducing basis
functions (e.g., travelling Gaussians21-25) for the quantal nuclear
motion and solving for the time-dependent weights of these
nuclear basis states. This procedure also allows for introducing
correlations between electronic and nuclear motion such that
there is a different nuclear dynamics for different electronic
states.26 The resulting formalism is well-explored,24,27,28and here
we are content with a classical description of the nuclear motion.

We discuss the dynamics of an electron exchange between
two atomic sites, one orbital per site. The distance between the
sites is allowed to vary subject to the total Hamiltonian. There
are quantum mechanical, semiclassical, and classical methods
that are available to treat this dynamical problem. Our aim is
not to propose one more method for treating nonadiabatic atomic
collisions. We are interested in the dynamics of the electron
due to the coupling to the motion of the nuclei. Specifically we
aim to demonstrate the possible failure of the electronic motion
to be governed solely by the instantaneous positions of the
nuclei.

The dynamical solution presents the electronic motion from
a point of view that is different from what is usually done in
quantum chemistry. We therefore discuss what to expect. Our
procedure is analogous to what is sometimes referred to as
‘doing dynamics on the fly’. At every instant of time we allow
both electrons and nuclei to update their coordinates according

to the instantaneous values of the forces. It is worthwhile to
point out that this adjustment needs to take place also in the
dynamical regime where the Born-Oppenheimer separation is
a good approximation. Indeed, one can think of the separation
as the approximation where the faster moving electrons very
rapidly adjust to the current position of the nuclei. In other
words, also when the Born-Oppenheimer separation is a good
approximation, the electrons constantly move. Furthermore, this
motion takes place even when the electronic state is a stationary
one. Superficially this may seem unreasonable. But one must
bear in mind that the electronic state is a stationary one for a
given, fixed, value of the nuclear coordinates. When the nuclei
move to a new position, the (Born-Oppenheimer) electronic
state can change because it depends parametrically on the
nuclear coordinates. The signature of a failure of the Born-
Oppenheimer separation isnot that the site occupancy changes
with time but that it changes with time not according to the
dictate of the heavier and slower moving nuclei. In the case of
an extreme failure of the Born-Oppenheimer approximation,
it is the nuclear motion that rapidly adjusts to the instantaneous
location of the electron.

In their original paper29 Born and Oppenheimer argued, by
perturbation theory, that the separation between the electronic
and nuclear motion is governed by a coupling constant which
is the ratio of the electron to nuclear masses,κ2 ) xm/µ.
Using the notion of mechanical similarity,30 we shall show
analytically that in the classical limit the electron-nuclear
dynamics depends only onκ2. Ordinarily, one is in theκ2 , 1
limit. In high Rydberg states one encounters the ‘inverse’ Born-
Oppenheimer regime12 where the electron of very high principal
quantum number has a very long orbital period, longer than
vibrational or even rotational periods for the motion of the
nuclei. We mimic the slow motion of the electron by computing
the dynamics in theκ2 . 1 limit, where the simulations show
that the faster moving nuclei rapidly adjust to the instantaneous
position of the electron.

The classical Hamiltonian is derived in section 2. Section 2
and Appendix A also provide a brief summary of those results
of the quantum mechanical orbital approximation for H2

+ that
are needed for taking the classical limit. The equations of motion
are set up and solved in section 3. Mechanical similarity and
the scaling of the equations of motion inκ2 are discussed in
section 4 with more details provided in Appendix B.

2. Classical Limit for the One-Electron Two-Site Orbital
Problem

For the quantum mechanical problem we follow the discus-
sion of H2

+ in Chapters 1 and 2 of Slater31 with background
details given in Appendix A. The electronic Hamiltonian in a
basis of two orthogonal equivalent site orbitals is derived in
Appendix A as

Analytical expressions for the matrix elements and their
dependence on the internuclear distanceRare given in Appendix
A and shown graphically in Figure 6 therein. For the electron-
transfer integralâ(R) the simple declining exponential

provides an accurate fit at all but very close in distances. Unlike

Hel ) (E0(R) â(R)
â(R) E0(R) ) (2.1)

â(R) ) -â0 exp(-R/L) (2.2)
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as in the Hu¨ckel approximation, the energy of a siteE0(R) does
vary, albeit weakly, with the site-site separation.

The classical limit for the electronic degrees of freedom15,16

will be taken for the Hamiltonian (2.1). The classical variables
are one pair of (conjugate) variables per orbital. We shall use
the numbern, 0 e n e 1, of electrons per orbital, which is an
action variable, and the conjugate phaseφ. It will become clear
that the electronic Hamiltonian conserves the numberna + nb

of electrons, wherea and b are the indices of the sites.
(Classically, this is because it is independent of the conjugate
angle variableφa + φb.) Hence we require only two classical
variables: the charge difference between the two sitesn ) na

- nb (sincena + nb ) 1) and the phase differenceφ ) φa -
φb. As is expected from the quantum mechanical Hamiltonian
(2.1) and as will be shown classically explicitly, the two
stationary electronic states are the two combinations in (φ ) 0)
and out (φ ) π) of phase, respectively.

To obtain the classical limit of the Hamiltonian we first write
the quantal Hamiltonian in second quantized form. Using
creationŜi+ and annihilationŜi- operators (denoted by a caret)
for the electron on either site,i ) a or b

When the two sites are equivalent the two site energiesEi-
(R) are identical. The classical limit is obtained by taking
coherent states expectation values, where the coherent states
need to be specially constructed to take care of the restrictions
imposed by the Pauli principle.15 For the simple case of one
electron, see eq 2.13 of ref 16, one has

where the site indexi ) a or b. The expectation value of the
quantal Hamiltonian (2.1) is obtained, using eq 2.4, as

Note that the electronic energy depends not only on the
population of the two sites but also on their relative phase. For
a nonstationary electronic state, where the phases of the site
occupancies vary rapidly with time, the dependence on the
electronic phase is an additional source of modulation of the
interaction.

In the general case the Hamiltonian (2.3) will contain terms
up to fourth order in the electronic operators. It is then not the
case that the expectation values of the higher order operators
are the products of expectation values of linear and bilinear
terms. In that sense, our procedure is a classical limit. For an
orbital approximation, when the Hamiltonian has no terms
beyond the bilinear ones, the transcription is an exact one.16

Equation 2.5 is just the electronic part. The full classical
Hamiltonian contains two additional terms: the Coulomb
repulsion between the nucleiVnn(R) and the kinetic energy for
the relative motion, of reduced massµ, of the two centers

The dynamic coupling between the electronic and nuclear
motions is evident from the terms that depend on both kinds of
variables. Oscillations of charge from one site to another make
the electronic energy,Hel(R) time-dependent. Then the nuclei
are subject to a rapidly varying force, with a period determined

by the migration of charge between the two sites. In the Born-
Oppenheimer approximation one first determines the stationary,
R-dependent solution of the electronic Hamiltonian and uses
the expectation value of the electronic Hamiltonian as the
potential for the motion of the nuclei. The breakdown is caused
by a stationary solution of the electronic problem not necessarily
being a stationary solution of the full Hamiltonian. The reason
is that when the relative separationR is not a parameter of the
Hamiltonian but a dynamical variable, the terms in the electronic
Hamiltonian will be modulated as a function of time. Of course,
the cross-modulation between the two motions will only be
effective when they have comparable periods. Typically, the
nuclear motion is much slower, and this is what allowed Born
and Oppenheimer to introduce their separation. We shall use
the reduced massµ to scale the period (∝1/xµ) of the nuclear
motion, and we shall verify analytically that the dynamics
depend only on the mass ratio

and not on the individual masses. Born and Oppenheimer29

showed thatκ2 is the relevant perturbation parameter, and we
will show analytically that the electron-nuclear dynamics only
depends on this ratio. The absolute values of the masses are
relevant since they determine the period of the motions. Hence
if an external time scale, such as an electromagnetic field, is
added to the Hamiltonian, then the absolute values of the masses
do matter. But if there is no external frequency with which one
can resonate then only the mass ratio needs to be specified.

The two-equivalent-site problem presents an interesting
special case because the stationary solutions for the electronic
motion, which have even or odd symmetry, remain stationary
even when the charge-transfer amplitudeâ is modulated by the
motion of the nuclei. We will therefore also show computational
results for two in inequivalent sites.

Given the classical Hamiltonian, eqs 2.5 and 2.6, one can
compute a unique classical trajectory for the relative motion of
the nuclei and results are reported in section 3. However, for
given electronic initial conditions, the dynamics can depend on
the initial conditions chosen for the nuclear vibration. The reason
is the back-coupling from the nuclear trajectory to the electronic
dynamics. Therefore, in a manner made familiar by ordinary
(sometimes called ‘quasi-classical’) trajectory computations, one
can sample the initial phase of the vibration. In those situations,
e.g., in Figure 5, where there can be energy transfer between
the electronic and the nuclear degrees of freedom, the qualitative
outcome of the dynamics does depend on the initial phase. It is
then possible to compute a quasi-classical probability by running
many trajectories in a narrow energy range and determining
the fraction of all trajectories that lead to a particular outcome.

3. Equations of Motion

The classical Hamiltonian determines the time evolution for
both electronic

and nuclear

degrees of freedom. For the Hamiltonian specified in eqs 2.5
and 2.6, it follows that any increase in the charge on one site is

κ
4 ) m/µ (2.7)

dni

dt
) -

∂Hcl

∂φi
,

dφi

dt
)

∂Hcl

∂ni
, i ) a,b (3.1)

dP
dt

) -
∂Hcl

∂R
,

dR
dt

)
∂Hcl

∂P
(3.2)

Ĥel ) Ea(R)Ŝa+Ŝa- + Eb(R)Ŝb+Ŝb- + â(R)Ŝb+Ŝa- +
â(R)Ŝa+Ŝb- (2.3)

〈Ŝi+Ŝj-〉cl ) 〈øN)1|Ŝi+Ŝj-|øN)1〉 ) exp(i(φi - φj))xninj (2.4)

Hel(R) t 〈Ĥel〉 ) Ea(R)na + Eb(R)nb +

2â(R)xnanb cos(φa - φb) (2.5)

H ) P2/2µ + Vnn(R) + Hel(R) (2.6)

2710 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Remacle and Levine



exactly compensated by a decrease in the other charge

For this reason the coupling (charge-transfer) term in the
electronic Hamiltonian can be referred to as a one-one
resonance. Taking advantage of the conservation of the total
charge (which we take to equal unity) one can reduce the
number of classical variables for the electron dynamics to just
two conjugate variables

The division by a factor ofx2 is needed to make the
variables canonically conjugate; that is, that their Poisson (curly)
bracket is unity, as indicated. In this way the new variables
satisfy Hamiltonian equations of motion

where eq 2.5 is expressed in terms of the new variables as

For the two-equivalent-site problem, when the site energies
are equal, the two stationary solutions of the electronic problem,
dn/dt ) 0, dφ/dt ) 0, are obtained when cos(φx2) ) (1.
These are the classical even and odd solutions. The classical
Born-Oppenheimer approximation is obtained by computing
the classical electronic energy as a function of the parameter
R. For the two stationary electronic states the value of the energy
is Hel(R) ) Eg(R) or Eu(R).

The full classical Hamiltonian for two identical sites is

with

as shown in the Figure 6 in Appendix A. The four equations of
motion that we solve are

The equation of motion for the nuclei has two parts. The first
two terms are the mean potential of the two electronic states.
The third term is however determined not just by the population
of the two sites (1- 2n2)1/2 ) 2xnanb but also by their (time-
dependent and coupled to theRmotion, eq 3.10) relative phase.

Figure 1 shows typical trajectories in the Born-Oppenheimer
(κ4 , 1) regime. The overall point is that the electronic motion
is far faster than that of the nuclei. There is also a more detailed
point namely that the electronic motion ‘instantly’ adjusts to
the location of the nuclei. The latter is the essence of the Born-
Oppenheimer separation. To make this point in a graphically
vivid manner we chose initial conditions for the nuclear motion
such that its amplitude is reasonably high. This motion is shown
as the solid line with its scale on the ordinate on the right. The

dna

dt
+

dnb

dt
) 0 (3.3)

n t (na - nb)/x2, φ t (φa - φb)/x2, {n,φ} ) 1 (3.4)

dn
dt

) -
∂Hcl

∂φ
,
dφ

dt
)

∂Hcl

∂n
(3.5)

Hel(R) ) (Ea(R) + Eb(R))/2 + n(Ea(R) - Eb(R))/x2 +

â(R)x1 - 2n2cos(φx2) (3.6)

Hcl ) E0(R) + â(R)x1 - 2n2 cos(x2φ) + 1/R + P2/2µ

(3.7)

E0(R) ) (Eg(R) + Eu(R))/2, â(R) ) (Eg(R) - Eu(R))/2 (3.8)

dn
dt

) x2 â(R)(1 - 2n2)1/2 sin(x2φ) (3.9)

dφ

dt
) -2nâ(R)(1 - 2n2)-1/2 cos(x2φ) (3.10)

dR
dt

) P/µ (3.11)

dP
dt

) -
dE0(R)

dR
+ 1

R2
- (1 - 2n2)1/2 cos(x2φ)

dâ(R)
dR

(3.12)

Figure 1. Exactly computed electron (dotted curve) and nuclear (full
curve) dynamics vs time in the Born-Oppenheimer regime. Note how
the electronic motion is much faster and how its period tracks the
position of the nuclei. This is because, as shown in Figure 6, the
electronic coupling,â(R), is a rapidly varying function ofR. In the
text we show that the dynamics is completely defined by the ratio,
κ-4, of the reduced mass of the nuclei to the mass of the electron, eq
4.2. This plot is forκ ) 0.1778. The action variablen is in units ofp.

Figure 2. Exactly computed electron (dotted curve) and nuclear (full
curve) dynamics vs time in the Born-Oppenheimer regime (top panel)
and in its inverse (bottom panel). In the inverse regime the faster moving
nuclei adjust rapidly to the electron. The staircase-like motion of the
slow electron vs time, which is seen upon the close examination
provided by the insert, is discussed in the text.
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wide variations inR imply, cf. Figure 2, that the transfer integral
â(R) varies by more than 1 order of magnitude. At a givenR
the frequency of the electronic motion between two equivalent
sites is 2â(R). Therefore, if the electron fully tracks the motion
of the nuclei, its frequency will be quite high when the two
atoms are near and quite low when the atoms are far apart. In
this adiabatic regime, the nuclear dynamics are very accurately
given by solving, as usual, for the nuclear motion in the ground
electronic potentialEg(R).

One has decades of experience that usually, and certainly for
H2

+, the Born-Oppenheimer separation works very well for
the nuclear motion in the ground electronic state. Therefore,
the result that the ordinary vibrational motion computed on the
ground electronic potential is, in the Born-Oppenheimer (κ4

, 1) regime, identical to computing a nuclear trajectory using
the coupled dynamics can be considered as a test of the method.

Figure 2 contrasts the numerical solution of the equations of
motion in the Born-Oppenheimer (κ ) 0.1) and inverse Born-
Oppenheimer (κ ) 10) regimes. That the two limits are
complementary is quite clear from the numerical results. In the
Born-Oppenheimer regime the slowly moving nuclei determine
the instantaneous value ofâ(R) and the electrons immediately
adjust to this value of the transfer integral. In the inverse regime,
the fast moving nuclei immediately adjust to the local position
of the electrons. This leads to an interesting aspect that is only
seen when the abscissa is blown up. As seen in the insert, the
electronic motion vs time is a staircase-like curve. The reason
is the long time that a vibrational motion in an anharmonic
potential spends at the outer turning point. Therefore, there are
relatively long time windows whereR(t) is large. During those
windows the couplingâ(R) is very small, and so the electronic
charge distribution is not changing.

An interesting feature of the numerical solution, which
deserves a separate discussion that will be given elsewhere, is
that the breakdown of the Born-Oppenheimer approximation
is much more prominent when the electronic state itself is not
stationary. In the special case of two equivalent sites, this is
easier to understand. The Born-Oppenheimer stationary elec-
tronic state hasn ) 0 irrespective of the value ofâ(R). When
the two sites are not equivalent, the termn(Ea(R) - Eb(R))/x2
in eq 3.6 is not vanishing and so the phase is more rapidly
varying. For us, the unexpected point is that the separation of
the electronic and nuclear motions is less accurate when the
initial electronic state is not a Born-Oppenheimer stationary
state.

An example of electron dynamics for two inequivalent sites
is shown in Figure 3. In the Born-Oppenheimer separation one
solves the electron dynamics for clamped nuclei. In our case
this means that for each value of time one uses the value of the
instantaneous separationR to get the value of the electronic
coupling. The resulting expression for the charge migration is
n(t) ) -(∆R/x2)((∆R)2 + (2â(R(t)))2)-1/2. This works even
for not too low values ofκ, but fails, as shown in Figure 3,
whenκ > 1.

Figure 4 shows an example of the breakdown of the
separation of the two motions. The initial conditions for the
motion of the nuclei (R(0),P(0)) are chosen such that in the
Born-Oppenheimer approximation, it corresponds to a high
bound vibrational state. The motion in the Born-Oppenheimer
approximation is plotted at discrete values of time. The
continuous curve that goes through these points is the trajectory
computed from the fully coupled dynamics. The full dynamics
requires specifying initial values also for the electronic motion,
and the bound trajectory shown in Figure 4 is for the system

initially in the ground electronic state (n(0) ) 0,φ(0) ) 0).
Suppose however that the initial electronic state is not quite
stationary. Then the transfer of electronic energy to the nuclear
motion is quite facile and within one-half of a nuclear period
the bond dissociates.

Figure 5 shows the trajectory of the electron for the
dissociating trajectory shown in Figure 4. At early times when
the motion is Born-Oppenheimer like, cf. Figure 4, the electron
rapidly adjusts to the motion of the nuclei, hopping back and
forth between them. Then the electron stayed too long on one
side of the molecule, and this allowed the bond to break.

4. Mechanical Similarity

Mechanical similarity30 is a theorem about the invariance of
the equations of motion of classical mechanics. The familiar
virial theorem, long a mainstay of electronic structure theory,32,31

is a special case for a stationary bounded system. We here use
a special case of the general result in order to show that systems
with a given value ofκ2 t xm/µ follow the same trajectories.

The identification ofκ2 as the parameter whose (small) value
allows for a separation of the electronic and nuclear motion is
due to Born and Oppenheimer.29 They did so by casting the
full quantum mechanical stationary solution as a perturbation
expansion withκ2 as the coupling parameter. We shall show
explicitly that in the classical limit the full dynamics is governed
by the magnitude ofκ2.

Figure 3. Exactly computed electron (dotted curve) dynamics vs time
in the Born-Oppenheimer regime (top panel) and in its inverse (bottom
panel) for two sites which differ considerably in their ionization
potentials (∆IP ) â(Req)). The electron stays longer at one site than
the other. For each panel, one can analytically solve the electron
dynamics in the Born-Oppenheimer separation. For the top panel,κ

) 0.1778, the result is distinguishable from the exact dynamics but is
barely different to graph reading accuracy. For the bottom panel,κ )
3.162, and then the Born-Oppenheimer separation (dashed curve) fails.
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Superficially, it may seem that there is no need for a detailed
proof and that the following general argument will do: Consider
a Newtonian problem withn degrees of freedom, each with its
own mass. Then the equations of motion for the coordinates
aremid2ri/dt2 ) -∂V/∂ri, i ) 1,...,n. If all masses are scaled by
a common factorκ4 the equations of motion and their solution
remain unchanged except that time runs faster by the factorκ2.
Q.E.D. The reason one cannot simply refer to this well-known
result is that the mechanical coordinates of the electron have
also kinetic and not only potential coupling, the two together
being necessary to have a strict one-one resonance coupling of
the type exhibited in the Hamiltonian (3.6). So we regard it as
unavoidable to verify the result. We provide a shorter proof in
the text and a completely detailed proof in Appendix B.

The short proof begins with the observation that since we
work in atomic units, all masses are measured in units of the
electron mass. Therefore the equation of motion for the nuclei,
eqs 3.11 and 3.12, should really be written as

The equations of motion for the action-angle variables, eqs
3.9 and 3.10, remain as they are when expressed in atomic units.
Therefore, the only dependence onκ is in the left-hand side of
eq 3.11. The left-hand side of eq 4.1 suggests that time is scaled
by κ2, τ ) κ2t, so that the nuclear dynamics become independent
of the mass

Numerically, if one solves the unscaled equation of motion
(3.11) for R(t) then trajectories computed for different values
of µ should fall on the same curve when plotted vsτ. We have
verified that this is the case for the results forR(t) where between
the two panels shown in Figure 2 the value ofµ is changed by
8 orders of magnitude. The reader will quickly recognize that
the equations of motion (3.9, 3.10) for the electron do not scale
with τ . This is only apparently so because the equations are
written in atomic units. In fact, they do scale properly but to
show this one should be careful with the units. A continuation
of the short proof is to note that if the action variablen is taken
to be dimensionless (i.e., it is action measured in units ofp)
then the coupling integralâ in eq 3.9 has the dimensions of
frequency while in eq 2.5 it has the dimensions of energy. In
other words, to be precise with the units, the coupling in eq 3.9
should be written as (â(R)/p) (the same is true for eq 3.10).
The scaled equation of motion forn therefore reads

wherep* is the value of Planck’s constant for the new value of
the electronic mass. In other words, we take the value of
Planck’s constant to change if we change the mass of the
electron. The reason is that in doing mechanics one is allowed
to scale the mass while keeping the length unchanged. So when,
say, the Bohr radius is kept constant and the electron mass is
scaled, then it is inevitable thatp scales asxm and frequency
scales as 1/xm . When time is scaled withxm then energy is
unchanged. Appendix B gives a more detailed discussion.

5. Concluding Remarks

Coupled electronic and nuclear classical equations of motion
for an electron oscillating between two centers were presented
and solved numerically. The electron transfer between the two
sites is governed by the electronic interaction. This interaction
is a function of the site-site distance, and this couples the
electronic and nuclear motions. We work in the site representa-
tion so that the electronic motion does not cease even if the
nuclei are clamped. As expected, when the nuclear motion is
slow compared to the electronic hopping between the two sites,
the Born-Oppenheimer separation works well: the period of
the electronic motion is determined by the value of the electronic
coupling for the nuclei clamped at that point and the nuclear
motion is governed by a static potential determined as the

Figure 4. Example of a qualitative breakdown of the Born-
Oppenheimer separation.κ ) 0.1778. Shown are three nuclear
trajectories, all three starting from the same initial conditions,R at
equilibrium and a high momentum. When the initial conditions for the
electron correspond to a (Born-Oppenheimer) stationary state,n ) 0
for a symmetric diatomic, the motion remains bound. The solution for
R(t) in the Born-Oppenheimer approximation (short-dashed curve)
cannot be distinguished from the results of the exact dynamics (long-
dashed curve). If the initial electronic state is not stationary so that
there is some electronic energy over the ground state, then energy
rapidly flows into the nuclear motion and the molecule dissociates.
The corresponding electron dynamics are shown in Figure 5.

Figure 5. Electron dynamics (dotted line) for the dissociating trajectory
shown in Figure 4 and reproduced also in this figure. When the nuclear
motion is bound, the period of the electronic motion is quite short. At
about 1000 au of time, when the electron is on one side of the molecule,
it fails to swing to the other side and instead imparts energy to the
nuclear motion.

κ
-4 d2R

dt2
) -

dE0(R)

dR
+ 1

R2
- (1 - 2n2)1/2 cos(x2φ)

dâ(R)
dR

(4.1)

d2R

dτ2
) -

dE0(R)

dR
+ 1

R2
- (1 - 2n2)1/2 cos(x2φ)

dâ(R)
dR

(4.2)

dn
dτ

) x2 (â(R)/p*)(1 - 2n2)1/2 sin(x2φ) (4.3)
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eigenvalue of the electronic problem for clamped nuclei. The
coupled classical equations of motion depend only on the ratio
of electronic to nuclear mass,κ4 ) m/µ. Forκ < 1, the Born-
Oppenheimer separation works well except when the initial
charge distribution is far from a stationary one (e.g., asymmetric
for two equivalent sites). Forκ > 1, the separation fails and it
is the electron that moves in the static potential determined by
the nuclei.
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Appendix A: Quantum Chemistry

The elementary discussion of H2
+ (Chapters 1 and 2 of

Slater31) begins with hydrogenic orbitals, eq A.1, one orbital
per site. For a finite site-site separationR, such orbitals are
not orthogonal and their overlap, which depends onR, is denoted
by S. The equivalent-two-site problem has an inversion sym-
metry and so linear combination of orbitals can be given an
even (g) or odd (u) symmetry labels. When only one orbital is
used per site, the two states are

Here r is the distance of the electron to its nucleus, with a
screening constantR. We keepR explicitly for future reference
but unless otherwise stated, the computations will be carried
out for R fixed at the value of the separated atoms,R ) Zme2/
p2, whereZ is the charge on the nucleus, andm ande are the
electron’s mass and charge. In the atomic units that we will
useR ) 1, but since we intend to also discuss the scaling with
the electron’s mass, we show it explicitly.

In the limited atomic basis, the functions (A.1) diagonalize
the Hamiltonian, withR-dependent eigenvalues,Eg/u(R). Ex-
plicitly,

the first term being the kinetic energy and the second the
potential. Our result differs from the form given by Slater in
that we use an explicit form for the kinetic energy of the
electron, namely-(p2/2m)∇2, whereas Slater who works in
Rydberg units writes the kinetic energy just as-∇2. The F’s
are ratios of simple polynomials given explicitly by Slater.
Making a few sign changes in these polynomials produces the
expression forEu(R) so that using upper/lower signs for the g/u
case respectively, in atomic units,

whereS is the overlap integral

To assign the charge uniquely to one site or the other, we
de-diagonalize the electronic Hamiltonian. For two equivalent
sites this is achieved by a rotation of 45°

The orthogonal site orbitals in which the new Hamiltonian
matrix is specified are

and correspond to the orthogonalized basis orbitals of Lo¨wdin.33

The migration of charge from one site to another is due to the
transfer amplitudeâ,

Equations A.2-A.7 provide an analytic expression for the
dependence of the electron-transfer amplitude on the internuclear
distance R, a dependence that is well-fitted as a simple
exponential, eq 2.2. (The correlation coefficient forR > 0.3 au
is better than 0.999, and a sum of two exponentials provides an
essentially exact fit forâ(R).) Figure 6 is a plot of the analytic
form of â(R) as well as that of the site energy,E0(R) )
〈æa|Hel|æb〉. Note that the simple Hu¨ckel approximation takes
the site energy to be independent of the distance to the other
site. This is not exactly the case, as shown in Figure 6. The
deviation of the site energy from the value of an isolated site is
accurately represented as a difference of two exponentials.

Appendix B: Scaling

We want to scale time and mass but not distance such that
Newton’s equation of motion and therefore energy, remain
unchanged. If the potential energy is only a function of the
coordinates, it is unchanged by such a scaling. The kinetic

Figure 6. Electron-transfer coupling,â(R), and the site electronic
energy,E0(R), as defined in eq 3.8. Note the essentially exponential
decline of â(R) with the internuclear separationR. In the Born-
Oppenheimer approximation 2â(R)/p is the frequency of the electronic
motion when the two nuclei are at the distanceR apart. As discussed
in Appendix B, this frequency decreases, as 1/xm, when the elec-
tronic massm is (artificially) increased. The insert shows the two
eigenvalues, of even and odd symmetry, of the electronic Hamiltonian
of H2

+ vs the internuclear distanceR. Note that the Coulomb repulsion
between the two nuclei is not included in the values as shown. The
potential energy for the nuclei is, in the Born-Oppenheimer ap-
proximation, E(R) + 1/R. The eigenvalues are computed without
optimizing the screening parameterR.

Hel ) (Eg(R)
Eu(R) )98

rotation (E0(R) â(R)
â(R) E0(R) ) (A.5)

æa/b ) (σg ( σu)/x2 or σg/u ) (æa ( æb)/x2 (A.6)

â(R) ) 〈æa|Hel|æb〉 ) (Eg(R) - Eu(R))/2 (A.7)

σg/u ) [(2π/R3)(1 ( S)]-1/2(exp(-Rra) ( exp(-Rrb)) (A.1)

Eg/u(R) ) (Ze2R)[F1(RR) + F2(RR)] (A.2)

F1(RR) ) (1 ( exp(-RR)(1 + RR - (RR)2/3))/2(1( S)

F2(RR) ) -(1 ( 2 exp(-RR)(1 + RR) +(1/RR) -
exp(-2RR)(1 + 1/RR))/(1 ( S) (A.3)

S(RR) ) exp(-RR)(1 + RR + (RR)2/3) (A.4)
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energy is unchanged if the mass and time are changed such
that mass/time2 remains constant. We first complete all the
details for the discussion given in the text in section 434 and
then give a proof purely within classical mechanics without a
reference top.

The atomic unit of energy34 e2/a, wherea is the Bohr radius
and e the elementary charge, remains unchanged under the
proposed scaling. The atomic unit of frequencye2/ap will change
and requires that if the mass of the electron is changed, we scale
the value ofp such that, using primes for the new values,p )
(m′/m)1/2p. As a check note that this scaling keeps the value of
the dimensionless fine structure constante2/pc, wherec is the
velocity of light. (The scaling of time requires thatc′ ) (m′/
m)-1/2c.) The atomic unit of time,p3/me4, scales withxm as it
should. This provides all the details needed to rescale equations
written in atomic units. There is however no essential need to
work in atomic units. Indeed, they are a shade cumbersome if
one wants to scale the mass of the electron. Therefore we
provide a proof of mechanical similarity without any reference
to the value of Planck’s constant.

Let I be a classical action variable. The classical electronic
Hamiltonian, written in terms of dimension bearing action
variables is, cf. eq 2.5

The different frequencies that appear in eq B.1 correspond
to the energies that appear in eq 2.5. As in the text, we putIa

+ Ib ) A, Ia - Ib t x2 I so that the equation of motion forI
is

An action variable, dimensions coordinate‚momentum, scales
as mass/time and sincet′ ) (m′/m)1/2t, I′ ) (m′/m)1/2I. Therefore
the left-hand side of eq B.2 is unchanged by the scaling, (dI/
dt)′ ) (dI/dt). The right-hand side is unchanged because the
frequency scales as 1/time.

An even longer derivation begins with the actual coordinate
and momentum of the electron with respect to the two sites
and expresses the Hamiltonian in terms of them. For complete-
ness sake we write the form of such a Hamiltonian for two
equivalent sites, using lower case fonts for the variables that
describe the electronic motion:

where the frequency for the motion of the electron is given by

The equation of motion forR is

so that the nuclear motion only depends onκ. From eq B.5τ )
t/xm. The equation of motion forra is

where the right-hand side is also independent of the masses.
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Hel(R) ) ωa(R)Ia + ωb(R)Ib + 2ω(R)xIaIbcos(φa - φb)

(B.1)

dI
dt

) x2 ω(R)(A2 - 2I2)1/2 sin(x2φ) (B.2)

Hcl(R) ) 1
2
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2m
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2 + 1
2
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2 +
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